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The interaction of deep-water gravity waves and an 
annular current: linear theory 

By MARIUS GERBER 
Department of Applied Mathematics, Stellenbosch University, Stellenbosch, South Africa 

(Received 21 March 1990 and in revised form 2 October 1992) 

The interaction of linear, steady, axisymmetric deep-water gravity waves with pre- 
existing large-scale annular currents has been investigated. Waves originating inside 
the annulus as well as waves approaching the annulus from the outside were studied. 
Exact linear ray solutions were obtained and involve two non-dimensional 
parameters, a radius-angle parameter and a velocity parameter. For opposing 
currents the linear solutions also allow the derivation of radii at  which the waves are 
blocked, reflected at  a linear caustic or stopped by the current. Various examples of 
rays interacting with an annular current are presented to illustrate aspects of the 
solutions obtained. In particular, the behaviour of the ray solutions at  blocking, 
reflection and stopping is investigated. Linear ray theory is shown to fail at caustics 
and caustic solutions are briefly discussed. 

1. Introduction 
The interaction of surface gravity waves and water with a non-uniform current 

distribution is important in a number of different contexts. Waves near the coastline 
and beaches may be significantly influenced by tidal currents and wind-driven 
currents. On a larger scale, the strong western-boundary currents of oceans can, and 
do, strongly affect ocean waves. Recent relevant papers are by Gerber (1991), who 
discussed the generation of giant waves in the Agulhas Current, and Holthuijsen & 
Tolman (1991), who used a third-generation numerical wave model to study effects 
of the Gulf Stream on ocean waves in swell and storm conditions. 

Much of the significant theoretical work in this field makes use of a short- 
wavelength or refraction’ approximation to describe the variation of the waves. 
That is, the lengthscale of the current distributions is assumed to be much greater 
than the wavelength of the waves and an approximation equivalent to the geometric 
optics approach for light propagation can be justified. This so-called plane-wave 
ansatz leads to hyperbolic-type initial value problems. The first-order approximation 
then gives an ‘eikonal’ equation for the wave rays and the second-order 
approximation a transport (wave-action) equation for the wave amplitude. Meyer 
(1979) gives a more complete review. 

The emphasis of this paper is on the linear theory of the interaction of deep-water 
waves, generated on still water, and pre-existing large-scale currents. Longuet- 
Higgins & Stewart (1960, 1961) were the first to give an accurate description of linear 
wave-current interactions and introduced the concept of radiation stress. Further 
contributions to our understanding of the interaction of linear waves and large-scale 
currents came from, among others, Whitham (1962), Bretherton & Garrett (1968) 
and Peregrine (1976), who examined a number of different situations. 

In almost all of the above studies the analysis was confined to two special 
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situations of steady currents, namely (i) straight currents, varying with distance 
along the stream or (ii) straight currents varying across the stream. Exact linear 
solutions for these situations were derived by Longuet-Higgins & Stewart (1960, 
1961). Here we extend the range of known linear solutions by considering the 
simplest formulation of interaction with a curved current, namely steady 
axisymmetrical waves on an axisymmetrical annular current. This restriction 
simplifies the mathematics but, even so, solutions have been found for a wide range 
of cases. 

In this study, as in all the work mentioned above, we consider an ideal flow and 
disregard the fact that regions of shear in the current are always turbulent. Any 
really effective treatment should also include the time-varying properties of the flow. 
However, Savitsky (1970) found that even small mean currents can be more 
important than the effects of smaller-scale turbulence so the simplification to steady 
flow may be a good approximation. 

In many circumstances the waves may be refracted, leading to considerable non- 
uniformities of wave energy. The ray calculations then frequently lead to crossed 
rays, which correspond to singularities of the ray approximation. For small- 
amplitude waves the plane-wave approximation can usually be improved where rays 
meet at  a caustic. The maximum steepness of the caustic solution will then indicate 
whether the small-amplitude approximation remains valid or not. Uniformly valid 
small-amplitude approximations which include reflection-type caustics have been 
developed by McKee (1974) and Peregrine & Smith (1975, 1979), while Peregrine 
(1976) gives details for waves at  a stopping velocity caustic. 

A noteworthy situation involving caustics occurs off the south-east coast of South 
Africa. The interaction of large south-westerly swells with the opposing Agulhas 
Current produce sporadic giant waves and have caused extensive damage to shipping 
(Mallory 1974). Ships wishing to take advantage of the strong Agulhas Current, 
which flows down the coast at  4-5 knots, have encountered waves with very steep 
leading edges and with wave height of the order of 20 m. Smith (1976) studied the 
generation of giant waves on the Agulhas Current. He assumed the current to be 
steady and irrotational and investigated wave reflections at  a straight caustic. He 
derived a relevant nonlinear Schrodinger equation which described the behaviour of 
the wave amplitude. An asymmetric wave profile and wave peaks with steep leading 
edges were found, which is in agreement with what is known of the prototype. The 
validity of Smith’s assumption of a straight caustic must, however, be questioned. 
The stretch of Agulhas Current under consideration (north of approximately 34’s) 
is not straight, but closely follows the curvature of the south-east coast of South 
Africa. Neither can existing analytical ray solutions adequately model the 
‘upstream ’ reflections of waves initially outside an opposing straight shear current. 

The purpose of this paper is to extend the linear theory of the interactions of waves 
with a large-scale current to more general current situations. The study was 
motivated by the inability of the linear theory of parallel shear flows to reflect 
incident waves, initially outside the current, and opposing the flow direction. The 
present linear theory indicate that when the waves and current propagate in the 
same direction, but with some angle of incidence between the current and the wave 
rays, the waves will be refracted by the current until the rays become parallel to the 
current. At  this point the waves will not penetrate the current any further but will 
be reflected back out. When the waves approach a straight opposing shear current 
at  some angle, a different situation is described. In  this case the wave rays will be 
refracted towards the propagation direction of the current and may even be swept 
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downstream by the current. Reflection, as described above, will not take place and 
the rays will eventually penetrate the current. However, for waves initially outside 
the current, numerical modelling has indicated that 'upstream reflections ' (that is 
reflection of the waves on an opposing current) can take place on curved currents. It 
is anticipated that this reflection may lead to very steep waves which cannot be 
described by infinitesimal-wave theory. 

The mathematical description of steady linear axisymmetrical waves on an 
axisymmetrical annular current is present in $ 2. Exact linear solutions for convex 
and concave currents are presented. I n  $ 3  the particular solutions, corresponding to 
waves being reflected, blocked and stopped by the current, are discussed. Various 
examples are also presented in $4 to elucidate the difference between these features. 
Energy considerations are discussed in $3. In  $6 the validity of the plane-wave and 
small-amplitude approximations is discussed while the relevant linear caustic 
solution is briefly discussed in $ 7 .  Conclusions are presented in $8.  

2. Mathematical formulation 
The kinematics of a train of surface gravity waves in the presence of a slowly 

varying current U(x)  are characterized by a wavenumber k ( x ,  t )  and an intrinsic 
frequency a(k)  (two-dimensional horizontal vectors are assumed unless otherwise 
indicated). The dispersion relation gives the functional dependence of a on k and for 
linear deep-water waves : 

The apparent frequency, i.e. the frequency of waves passing a fixed point, is 

g2 = gk, k = Ikl. 

w = g(k) + k *  U.  (2.1) 

Consistency relations between o and k are given by (i) the kinematical conservation 
equation for the density of waves, 

a k p t  = - uW, (2.2) 

and (ii) the condition that the distribution of the local wavenumber vector in space 
is irrotational : 

Consider now, in polar coordinates, an annular current of the form 

V x k = O .  (2.3) 

u = U,(r) e,, (2.4) 

where r and 6' are the polar coordinates and e, is a unit vector in the &direction. 
Equation (2.4) describes an axisymmetric current with arbitrary velocity profile 
which is a function of the radial distance only. 

For a steady axisymmetric wave field, with wavenumber k = k,e,+k,e,, (2.3) 
becomes 

Locally, for a, the angle between the wavenumber k and the unit vector e, in the 
radial direction, (2.5) then gives (see figure 1) 

(dldr) ( rkH)  = 0. (2 .5)  

rk, = rk sin a = rk: sin (+O) = m, (2.6) 

where q5 is the angle between k and the x-axis and m is a constant. 
The apparent frequency (2.1) now becomes 

o =  a + k U , s i n a =  k[c+U,sina], ( 2 . 7 )  

8 ~ 2  
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FIGURE I .  Definition diagram of rays interacting with an annular current, 

where c = g / k ,  since U does not have a component in the U,-direction. On 
substitution of (2.6), and by using the linear dispersion relation, (2.7) becomes 

w = k:[c+mU,/rk] = g/c+mU,/r. 

Thus 
(w-mU,/r)2 

and F c =  9 C =  
w-mU,/r g 

Finally, from (2.6) 
m mg 
rk: r(w-mli&/r)2 

sin a = - = 

on substitution from (2.8). 

k = Ic, and the phase speed c = c,) ,  (2.7), (2.8) and (2.9) become 
For a wave ray initially outside the influence of the current (where the wavenumber 

mg 
rw 

g k --, w2 sins,=, 
c, = - 

9 w ’  O -  

Then 
1 - C - _  

c,  l-rnU,/rw’ 

1 
(1 - mU,/rw)z ’ 

- sin a: 
sin a, 
-- 

(2.10) 

(2.11) 

(2.12) 
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Convex currents Concave currents 
(a) R = 1; 9. < 90" 

(b) R = 1 ; 9. > 90" 
Inside annulus : R < 1. 

(a) R = 1; 9, > 90' 

(b) R = 1;  q50 c 90' 
Inside annulus: R > 1 .  

FIGURE 2. Definition diagram for concave and convex currents. 

I n  order to interpret the above relations, it is convenient to specify the outside (or 
inside) radius of the annulus at  the point of entry of the ray. Let the radius of the 
current at this point be ro. Assume further that U, = 0 just outside (inside) the 
annulus, i.e. where r + ro. From the symmetry of the current it is clear that, without 
loss of generality, a polar angle Bo = 0 can then be selected for the point of entry ro. 
Since a = q5- 0,  a. = ($-O)o and the angle between k and the x-axis at  ro is then $,, 
(see figure 1 ) .  Equations (2.10), (2.11) and (2.12) then become 

(2.13) 

(2.15) 

By introducing the dimensionless variables C = c/co, K = k/ko, R = r / r o  and 
V = L&/co, equations (2.13), (2.14) and (2.15) can be written as 

R cosec q50 
R cosec $o - V '  

R cosec $o 

C =  

R cosec q50 
[R coBec q50- q2. sin a = 

(2.16) 

(2.17) 

(2.18) 

We now introduce the terminology that for rays initially outside the annulus, 
which then penetrate the circular current at  R = 1, so that R < 1 within the annulus 
where V =I= 0, the term convex current (to the direction of wave approach) will be used. 
Conversely, concave currents have waves that originate inside the annulus before they 
penetrate the annulus at  R = 1 .  R will then become greater than unity within the 
annulus where V + 0. Figure 2 is a schematic representation of convex and concave 
currents as defined above. 
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FIGURE 3. The radius at  reflection, R,, as a function of V for various initial angles 9,. Note that an 
initial angle #,, for R > 1 (concave currents) corresponds to 180°-q50 for R < 1 (convex currents). 

3. Special solutions 
It is clear that the right-hand side of (2.18) can have a magnitude greater than one 

for the range of V-values. This defines upper and lower limits to V for which solutions 
exist. The critical velocities bounding the region without waves are 

V = R cosec q5,k ( R  cosec q5,);. (3.1) 

At these critical velocities a = 90’ so that the waves travel parallel to the current. 
In  practice the rays are tangent to a caustic curve, concentric with the eddy, and 
reflection of the rays result. It is important to  note that with this model the wave 
motion along rays is entirely reversible. Note also that ‘reflection’ in this paper 
implies a =  90” and V =I= 0. The corresponding circular caustic curve is thus at  a fixed 
radius from the origin within the current. For axisymmetrical wave fields caustics 
can, however, also occur in the absence of ‘reflection’. This is when the wave rays 
cross within the core of the annulus and although a = 90°, V = 0. 

Equation (2.18) allows us to solve for the linear radius a t  reflection, R, = ( r / ~ , ) ~ ,  as 
a function of V ,  

where the positive root of (3.2) is consistent with the usual choice of negative root for 
(3.1). The reflection radius, R,, is shown graphically in figure 3 for a range of incident 
angles 45,. It is clear from figure 3 that, unlike for straight shear currents, reflection 
of the wave field is now also possible for waves initially outside an opposing current, 
but since reflection for V < 0 is only possible for R < 1,  only for currents convex to 
the direction of wave approach. 

For currents opposing the direction of wave approach two other refraction 
configurations, at other a angles, may also be identified. ‘Blocking’ is when the 
component of the group velocity in the direction of e,, C, sin a, becomes equal to 

R, =+sinq5,[1+2V+(1+4V)~], (3.2) 

IGl: 
C, sin a+% = 0, (3.3) 

and the waves are blocked in the e,-direction. This is shown schematically in figure 
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FIGURE 4. Schematic representation of axisymmetrical waves blocked by an opposing convex 
annular current. Eight individual wave rays with corresponding wave crests are shown. The radius 
at which each ray is blocked by the current is shown by the dashed line. 

4. As in the case of reflection a fixed ‘blocking radius ’ from the origin may also be 
identified. Note also that at  the blocking position all the wave rays have a radial 
orientation. 

The second, or ‘stopping’, configuration results when the local group velocity of 
the waves becomes equal and opposite to the convection velocity of the current : 

(3.4) C,+ U, sin a = 0. 

The crests of the waves are refracted to be parallel to the ray direction and the waves 
are stopped in the k-direction. Figure 5 is a schematic representation of waves 
stopped by the current. As before, a fixed ‘stopping radius’ from the origin may be 
identified. 

The blocking condition, equation (3.3), can be investigated further. On substitution 
of (2.13), with C, = %, and (2.15) into (3.3) the following expression for the blocking 
radius R,, where R, = (T/rO)block, is obtained : 

(3-5) 2VR, cosec # O [ 1 -  V/(B,, cosec #,)I3 + 1 = 0. 

The radius at blocking, corresponding to different adverse current values V ,  can then 
be calculated from (3.5) for different incident angles q50. For the blocking radius 
shown in figure 4, (Po = 120’ and V = -0.28. 

The stopping velocity condition (3.4) can also be investigated further (see Phillips 
1978) : Consider a steady wavetrain. Equation (2.7), for a constant frequency w ,  gives 

Ic[c + U, sin a] = k,  c,, 

where Ic0 and co are the constant wavenumber and phase-velocity parameters in still 
water. Since 

c = ( g / k ) i ,  co = (g /k , ) i ,  



160 M .  Gerber 

FIGURE 5. As figure 4 for but axisymmetrical waves stopped by an opposing 
convex annular current. 

a quadratic equation in C = c/c, results 

C2 = K-l = C+ V sin a. 
The solution is 

1 1  
2 2  

c = - +- [i + 4~ sin a]+, 

which implies that 
V sin 01 2 -$. 

At the caustic the equality will apply. Equation (3.6) defines the limit to the adverse 
current velocity, for different (V ,a )  combinations, at  which the waves will be 
stopped. The waves will therefore be stopped in the k-direction for a range of a- 
values, as shown by (3.6), and only at reflection when V = -a and a becomes equal 
to 90" will the reflection and stopping conditions occur simultaneously. 

The linear radius at stopping, R, = (r/r,),,,,, can also be obtained from (3.6). 
Substitution of (2.18) into (3.6), with equality being applied, gives 

R, = - V/cosec $,, (3.7) 

which is independent of a. For the stopping radius shown in figure 5 ,  $, = 120" and 

By using (2.16) and (2.17) the dimensionless celerity C and dimensionless 
wavenumber K may be contoured in the (R cosec q5,, V)-plane. Superposition of the 
current profile, as a function of the radius R and the initial angle $,, V(R cosec $,), 
then provides an easy mechanism to study the variation of the waves. Both C and 
K contours are straight lines through the origin of the (Rcosec $,,V)-plane. 
Similarly, if the resultant a-values of (2.18) are contoured in the (22 cosec q5,, V)-plane 

V = -0.5. 
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0 0.25 0.50 0.75 1 .oo 1.25 1.50 1.75 2.00 

R cosec q$, 
FIGURE 6. Contours of a on the (R cosec q+,, V)-plane. The a = 90" contour is also the reflection 

contour. The blocking and stopping contours are also shown. 

the contours of figure 6 are obtained, The intersection of the various contours with 
the R cosec $,-axis then indicate the cosec q5,-values of the initial q+, entry angles, 
that is where R = 1 and B = 0. Since for concave (convex) currents R > 1 (R < 1) .  the 
abscissa values in figure 6 will be increasing (decreasing) from the initial cosec 
&value when rays penetrate the annulus from the concave (convex) side. 

The 01 = 90" contour in figure 6 is of particular interest since it represents the linear 
caustic curve where reflection of the wave rays take place. Other important contours 
in figure 8 are those which indicate where the rays are blocked or stopped by the 
current. These contours were obtained from (3.3) and (3.4). It is clear that only the 
lower branch of the blocking contour in figure 6 is relevant. Figure 6 also shows that 
for waves initially on still water, for both concave and convex currents, the blocking 
condition will always occur before the stopping condition can be satisfied. 
Furthermore, in practical applications the linear stopping velocity condition will 
only be satisfied for waves of relatively short period. This is due to the relatively large 
opposing current values needed for (3.4) to apply. 

4. Numerical ray solutions 
Waves interacting with a shearing current can, in general, exhibit four different 

types of behaviour. That is, the waves can (i) penetrate the current, (ii) be reflected 
by the current, (iii) become blocked by the current or (iv) be stopped by the current. 
Whereas all four of these types of behaviour can be expected from waves opposed to 
the flow direction of the current, waves that propagate in the same direction as the 
current cannot be blocked or stopped by the current. 

The information contained in figure 6 is very useful since it allows us to illuminate 
the different features of straight, concave and convex shearing currents. For 
example, for given initial angle of incidence, $,, different annular current 
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FIGURE 7. The annular current configuration used to generate the wave ray examples of figures 
8-14. In  cases of reflection of the waves, only the bold parts of the current profiles are relevant. 

FIUURE 8. Example 1:  a family of wave rays penetrating the following concave annular 
current marked (a) in figure 7 .  The initial angle between the ray and the x-axis g50 = 45' so that 
R cosec $o = 1.41. The value of the current parameter V,, = 0.28. The points of entry of the rays 
are marked E. 

distributions of the form (2.4) may be superimposed on the (B cosec g50, V)-plane and 
the variation of the waves followed graphically. Various numerical ray simulations 
of an axisymmetrical wave field interacting with an annular current of the form (2.4) 
are shown in figures 8-14. The point of entry of the rays in each of these figures is 
marked by E while the maximum current velocity within the annulus is indicated by 
a dashed line. The wave crests are also shown in some of these figures. For each of 
these figures the corresponding parabolic current profile is shown in figure 7. In 
particular instances where the waves are reflected by the current the relevant part 
of the current profile is indicated by a bold line. Also, the position on the ray where 
the waves are blocked, reflected and stopped by the current are shown by the filled 
circles marked B, F and S in figures 8-14. 

Figure 8 shows a family of rays penetrating the following concave annular current 
marked (a) in figure 7. The initial angle between the ray and the x-axis, g50, was taken 
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FIGURE 9. Example 2 : two wave rays blocked and reflected by the opposing convex annular current 
marked (6) in figure 7. do = 120" so that R cosec do = 1.15; and V,,, = 0.28. The points of entry, 
blocking and reflection of the rays are marked E, B, and F, respectively. 

FIGURE 10. Example 3 :  two wave rays blocked and stopped by the opposing straight current 
marked ( c )  in figure 7 .  $o = 60Oso that R cosec q50 = 1.15; and V,,, = -0.96. The points of entry, 
blocking and stopping of the rays are marked by E ,  B and S, respectively. 

as 45', corresponding to R cosec q50 = 1.41. The maximum value of the parameter 
V occurs at  the dashed centreline radius of the annulus and for this example 

Figure 9 is an example of two rays interacting with the opposing convex current 
marked (b )  in figure 7. The initial angle q50 = 12O'so that R cosec q5,, = 1.15. Only the 
bold part of the profile is relevant since the waves are reflected by the current. The 
filled circles in figure 9 correspond to  the positions where the waves are blocked 
before being reflected by the current. Since the wave motion along the rays is 

v,,, = 0.28. 
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FIQURE 11. Example 4 : two wave rays blocked, stopped and reflected by the opposing convex 
annular current marked (d )  in figure 7 .  q& = 12OOso that R cosec 4, = 1.15; and V,,, = -0.96, The 
points of entry, blocking, stopping and reflection of the rays are marked by E, B, S and F, 
respectively. 

reversible, the blocking contour is crossed twice (figure 7) before the waves exit the 
annulus. 

It is interesting to note that on a straight opposing current, such as the current 
marked (c) in figure 7, reflection of the waves is not possible. This is also shown in 
figure 10. As before, the filled circles indicate the positions where the waves are 
blocked and stopped by the current. The waves are only stopped at relatively large 
values of V ;  in this example V,,, = -0.96. 

Figure 11 is another example of waves interacting with an opposing convex 
current. Here the dimensionless current velocity, V ,  is such that the waves are both 
blocked and stopped before they reflect. The initial angle of incidence is, similar to 
that of figure 9, taken as I$,, = 120" and the relevant current profile is marked ( d )  in 
figure 7.  The value of V,,, = -0.96. The current profile marked ( e )  in figure 7 was 
used to generate the rays in figure 12. This profile is similar to that used in figure 11, 
except that here the waves approach the opposing current from the concave side. 

Waves may also be trapped by an annular current. Waves generated on still water, 
before interacting with a concave current, may undergo multiple reflections within 
a certain radius and thus become trapped inside the annulus. Figure 13 is a trapped 
ray solution corresponding to the current profile marked (f) in figure 7 .  The angle of 
initial incidence 

For this annular configuration, and for waves initially inside the annulus while 
propagating in the same direction as the current, it can also be seen from figure 7 that 
profiles that reach up to the upper branch of the caustic line a = 90" may have 
trapped waves on them for chosen initial conditions. Figure 14 is an example of such 

= 45" while V,, = 0.64. 
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FIGURE 12. Example 5: two wave rays blocked before penetrating the opposing concave annular 
current marked ( e )  in figure 7.  8, = 60° so that R cosec Co = 1.15; and V,,, = -0.96. 

FIQURE 13. Example 6 :  a wave ray trapped within the concave annular current marked (f) in 
figure 7 .  C,, = 45' so that R cosec $o = 1.41 ; and V,,, = 0.64. 

a single trapped ray. The bold part of the current profile marked ( 9 )  in figure 7 
corresponds to the ray solution shown in figure 14. It is clear that relatively large V- 
values are needed to trap the waves. In this example V,,, = 1.4. 

The parabolic nature of the contact of the caustic contour a = 90' with the V-axis 
in figure 7 also shows that (forK $: 0) the wave rays can only reachR = 0, i.e. become 
radially oriented so that there is a focus of rays at the origin, when $o = 0 (and 
m = 0). Otherwise (2.17) shows that, as R+O, K+m,  giving the so-called short- 
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FIGURE 14. Example 7 :  a wave ray trapped within the following annular current 
marked (9) in figure 7 .  

wavelength singularity. This is when waves are refracted so much that the 
wavelength becomes very short and the small-amplitude approximation is no longer 
valid since the waves become too steep. The case w = 0 also corresponds tJo R + 0 (for 
K =k 0) as can be seen on substitution for c and sina in (2 .7) .  

5. Energy considerations 

conservation equation (Peregrine & Smith 1979) : 
The specification of the wave field is completed by use of the wave-action 

Here 

@/at)  ( G , a 2 ) - V . ( G k a 2 )  = 0. 

G(w, k ,  X )  = 0 

(5.1) 

(5.2) 

is the linear dispersion relation for an inhomogeneous medium, Gwa2 3 A = E / ( T  is 
the wave-action density and G,a2 = B = (C,+ U)A the wave-act.ion flux. The wave 
energy E = ipga', where a is the wave amplitude. The linear set of equations (2 .2) ,  
(2.3), (5.1) and (5 .2)  then have a single set of characteristic or ray directions given by 

where wk is the group velocity of the h e a r  waves. 
For this steady problem, and by the radial symmetry, (5.1) becomes 

( l / ~ )  (a/&) ( rB.e, )  = 0. (5.3) 
For our choice of axisymmetric current (2.4), and for B = IBI, (5.3) integrates to 

RB cos a = RG,+a2 = constant. (5.4) 

For the linear waves considered here, the wave-action flux B = E / 2 k .  Thus (5.4), on 
substitution from (2 .17)  and (2.18),  becomes 

R2 sin 2aE = constant. (5 .5)  



Interaction of gravity waves and an annular current 167 

FIGURE 15. The variation of the linear wave amplitude A ,  (-) and steepness KA,  (----) as a 
function of the response angle a for various R-values. The initial angle 9, = 65' (concave currents) 
or 9, = 115' (convex currents). 

With the assumption that on the boundary, where R + 1,  V = 0 and 6, = 0, so that 
a. = (d-e), = 9, and E = E,, (5.5) gives 

(5.6) 

(5.7) 

A ,  = a/ao = (E/Eo)i  = R-l [sin 2$,/sin 2a31 

(R-' cos 9,); [R cosec $, - V I ~  
R cosec $,{ [R cosec 9, - VI4 - (R cosec q5,)2}>"' 

- - 

It is important to note the difference between the theory presented above and the 
alternate configuration of waves originating a t  a point r,, where V = V,, which may 
or may not be zero, and where the initial angle sin a = sin 01,. For the latter 
configurations (2.6) gives 

m = ro Ic,  sin a. at a radius r = ro, where V = V, ; 
= rl k, sin a1 at a radius r = rl, where V = V,; 
= r2 k, sin a, at a radius r = T,, where V = V,. 

Thus, for (say) V, = 0, but a t  r = r l ,  sin a1 = ( ro / r l )  sin 01, = R-' sin a,, so that 

cos a1 = ( 1 - R-l sin2 a,);. 

Equation (5.7), for V, = 0 and with 9, replaced by = a,, then gives 

A ,  = a/a ,  = ~ + [ c o s  a,/cos a ~ 2 ,  

which is in agreement with Peregrine (1981). 
The ratio (5.6), as well as the linear steepness KA,, is shown graphically in figure 

15 as a function of the angle a for various values of R and for the initial angle 
4, = 65' (for concave currents) or 4, = 115' (for convex currents). Comparison of 
figure 15 with figure 8 of Peregrine (1976) shows that the linear amplification of 
waves on a curved current proceed in a similar fashion to those on a parallel shear 
flow, except that  larger and steeper waves can be expected on convex currents 
(R < 1) than on straight or concave currents (R > 1 ) .  
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6. Validity of solutions 
In all ray calculations it is assumed a plane-wave solution will apply and thus that 

all length and time scales present are much greater than the wavelength and period 
of the waves. If, in addition, the wave amplitude, a, is also assumed to be slowly 
varying, the expression (5.1) for the conservation of wave action is obtained. 

It is clear from (5.4) that the linear wave amplitude, a, will become singular when 
R --+ 0 or when Gkr + 0. The first case, when R + 0, was shown to correspond to the so- 
called short-wave singularity. This is when the waves are refracted so much that 
their wavelength becomes very short and the small-amplitude approximation is no 
longer valid since the waves become too steep. In  practice the waves probably break 
and dissipate. 

It can be seen from (5 .5) ,  and is also shown in figure 15, that GK,+O when a+Oo 
or when a+90". On both following and opposing currents wave reflections imply 
a = 90' and Gkr = 0. The rays are tangent to a caustic curve and ray theory thus 
fails in the neighbourhood of the caustic. The second case shown in figure 15, when 
a+O, corresponds to the limit V+- co, or R+O. The first limit is not realistic in 
practical applications, while the limit R + 0 was shown to correspond to the so-called 
short-wave singularity. In the limit R = 0 the rays will be radially oriented and with 
a focus of rays at the origin. The plane-wave approximation will thus also not apply 
at  the origin. 

In situations where the waves are blocked by the current Gk, + 0 so that the ray 
solution will remain valid. For stopped waves, (3.4) and (3.6) apply. Ray theory will 
remain valid for all a-values except when a = 90" and the stopping and reflection 
conditions occur simultaneously. However, at stopping the waves may become 
sufficiently steep for nonlinear effects to become important and they may also break. 
At  stopping the small-amplitude approximation may thus become invalid. 

7. Caustic solutions 
In $6 we indicated the singular behaviour of the slowly varying-wave approxi- 

mation at  a caustic. The linear theory itself, however, is not singular and there 
are available uniformly valid small-amplitude wave approximations which include 
caustics. McKee (1974), Peregrine (1976) and Peregrine & Smith (1975, 1979) gives 
examples for straight caustics in an inhomogeneous medium. For a curved caustic in 
an inhomogeneous medium the analysis is similar to that of Peregrine & Smith 
(1979). 

Consider a family of rays which are refracted by the annular current (2.4) to  form 
a curved caustic. The linear dispersion relation for axisymmetric sinusoidal waves in 
a frame of reference moving radially across the annulus with group velocity cg is then 

w = a(kr ,  k,, r )  + k, U,(r) -cg k,. (7.1) 
Here, as before, the r-dependence of (7.1) is considered to vary on a larger scale than 
that of w and k .  If the radius of the caustic curve is denoted by r = ro,  and the local 
wave parameters there are wo and k,, (7.1) becomes 

wo = 4 k r o ,  kso ,ro )+~eoUBlo-~gokro  

so that in the neighbourhood of the caustic: 
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Expanding about k,  and r,, and if the leading-order contributions in wavenumber 
and position are retained, (7.1) becomes the perturbation dispersion relation 

(7.2) 

where the perturbation frequency 6 = w - wo and the perturbation wavenumber k = 

If the wave amplitude is also considered to vary slowly, then the small frequency 
and wavenumber perturbations may be associated with space and time derivatives 
of the complex amplitude a. That is, if we identify 

k-k , .  

the steady form of (7.2) reduces to 

The appropriate solution of the Airy equation (7.3) is 

a = a, Ai (71, 

with 

p = r-r,. 

The complex constant a, is found by matching the asymptotic formula of the Airy 
function 

for large negative values of 7, with the ray solution. 
When the results of this section are compared with $6 of Peregrine & Bmith (1979), 

it is clear that, for our axisymmetrical representation, the caustic results are similar 
to those obtained for a straight caustic in an inhomogeneous medium. A uniformly 
valid Airy function representation, similar to that given by (6.9)-(6.11) of that paper, 
will thus also apply here. 

8. Conclusions 
Exact linear solutions for the interaction of steady axisymmetric deep-water 

gravity waves and an axisymmetric annular current have been derived. Two 
important non-dimensional parameters, namely a current velocity parameter, 
V = &/co,  and a radius-angle parameter, R cosec $,, where R = r / r o ,  were identified. 
R > 1 corresponds to concave currents while convex currents have R < 1. 

For linear waves the radius a t  which the waves will be reflected, blocked and 
stopped by the current was calculated. For this current configuration the waves will 
nearly always be blocked before they are stopped, the exception being when the 
blocking and stopping contours cross and both conditions occur simultaneously. A t  
both blocking and stopping the ray solutions will remain valid, while a t  stopping the 
small-amplitude wave approximation may no longer hold. 
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Both positive convex currents and positive concave currents admit reflections, but 
reflections are only possible for negative convex currents. Reflections may also occur 
on opposing convex currents before the waves are blocked. On negative concave 
currents the linear waves may also be stopped by the current, but very large 
opposing current velocities are required. Furthermore, reflections on an adverse 
convex current will occur more frequently than the stopping velocity criterion can 
be satisfied. This is so since large negative values of V are needed to stop the waves. 
One exception is when, at the point of reflection, a stopping velocity caustic is formed 
when V = -t. The linear radius at this point is R = a sin $,,. 

Wave rays may also be trapped within the boundaries of the current. Waves that 
are generated on still water inside the annulus, and which penetrate the annulus, 
while travelling in the same direction as the concave current, may undergo multiple 
reflections and remain trapped within a certain reflection radius of the current. Only 
waves generated within the boundaries of the annulus can be trapped so as to remain 
within the annulus. For a positive convex current configuration an example was 
presented in $4. The theory presented in this paper limits the waves, and therefore 
also the current distributions, to cases where R cosec cp0 > 1 .  Figure 7 then shows 
that it is not possible to construct an adverse current configuration which can trap 
waves. 

In  all of the above examples it was assumed that the singularities occur within the 
boundaries of the describing current annulus. In a real life application it may be 
found that the waves penetrate or leave the annulus before the caustic is reached. 
Furthermore, since only steady, axisymmetrical waves were considered in this study, 
focusing effects associated with waves incident from a preferred direction could not 
be studied. It is, however, important to note that for other wave fields the individual 
rays will be as calculated in this study, but that the overall picture for a steady wave 
field will be made up of a family of such rays which may be very different from the 
axisymmetrical wave field considered here. For example, figure 16 shows one 
example of such unidirectional rays incident upon an annular current with velocity 
profile as shown. The resulting cusps and caustics are clearly defined and do not, as 
for axisymmetric waves, occur a t  fixed radii. 

The axisymmetrical representation considered here also restricts, for both concave 
and convex currents the practical application of the theory to two distinctly different 
types of wave fields. For concave currents the wave field inside the annulus is 
assumed to be spreading outward from, for example, a localized storm or a point 
source. In contrast convex currents have waves approaching the annulus from the 
outside and are therefore constrained to be converging inwards. This is a more 
uncommon physical situation and may, for example, be due to a rapidly travelling 
storm system if the propagation speed of the front is greater than the group velocity 
of the generated waves. 

An inwardly converging wave field can also result when a uniform wave field 
encounters a ring-like current structure and the waves are focused into a cusp by the 
current. All the major Western boundary currents of the world regularly shed eddies, 
plumes or rings which may then lead to focusing of the rays onto the original current. 
For the particular case of the Agulhas Current on the south-east coast of South 
Africa, Lutjeharms, Catzel & Valentine (1989) calculated that one shear edge feature, 
such as described above, is present 65 % of the time. Two or more features occur 36 % 
of the time. Griindlingh (1988, and private communication 1990) has also established 
that cold-core cyclonic rings commonly occur off the Agulhas Current. The surface 
current velocities associated with these rings can exceed 1 m/s while their predicted 
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FIGURE 16. Numerical simulation of unidirectional rays incident upon an annular current. The 
outer radius of the current was taken as 160 km while the irincr radius was 40 km. The period of 
the incident waves T = 10 s while the maximum current velocity U, = 2.0 m/s. An incidence angle 
of 45" was used for the rays. 

lifetimes are in excess of 18 months. For the particular case of the Agulhas current, 
the influence of certain current parameters on the resulting focusing of the waves was 
examined by Gerber (1991). 

For the particular application of waves interacting with the Agulhas Current 
(north of 34" S) on the east coast of South Africa, a convex current situation will 
apply. With an approximate radius ro = 1400 km and for an average width of the 
current of 140 km, only R = r / r o  values in the range 0.9 < R < 1.0 will apply. 

The author is pleased to acknowledge useful discussions with Professor D. H. 
Peregrine, 
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